• Statistics Seminar: Heterogeneous Statistical Transfer Learning

    Engineering 2, 499
    Hybrid Event

    Presenter: Subhadeep Paul, Associate Professor, Ohio State University Description: In the first part of the talk, we consider the problem of Transfer Learning (TL) under heterogeneity from a source to […]

  • AM Seminar: Probing Forced Responses and Causality in Data-Driven Climate Emulators: Conceptual Limitations and the Role of Reduced-Order Models

    Virtual Event

    Presenter: Fabrizio Falasca, New York University Description: A central challenge in climate science and applied mathematics is developing data-driven models of multiscale systems that capture both stationary statistics and responses to external perturbations. Current neural climate emulators aim to resolve the atmosphere–ocean system in all its complexity but often struggle to reproduce forced responses, limiting […]

  • AM Seminar: Data Driven Modeling for Scientific Discovery and Digital Twins

    Jack Baskin Engineering, 372

    Presenter: Dongbin Xiu, Professor, Ohio State University Description:We present a data-driven modeling framework for scientific discovery, termed Flow Map Learning (FML). This framework enables the construction of accurate predictive models for complex systems that are not amenable to traditional modeling approaches. By leveraging data and the expressiveness of deep neural networks (DNNs), FML facilitates long-term […]

  • AM Seminar: Multiscale Modeling of Cellular Membranes and Oncogenic Proteins

    Jack Baskin Engineering, 372

    Presenter: Liam Stanton, Professor, San Jose State University Description: In this talk, I will present a multiscale model for cellular membranes, which is trained on molecular dynamics simulations. The model is constructed within the formalism of dynamic density functional theory and can be extended to include features such as the presence of proteins and membrane […]

Last modified: Jan 20, 2026